COIN FLIPPING BY TELEPHONE

„A protocol for solving impossible problems"
Based on Manuel Blum's Paper from 1981
Proved useful for:

- Mental poker
- Certified Mail
- Exchange of Secrets

Table of Contents

- Application scenario and applicability
- Goals
- Needed mathematical properties
- Base Assumptions
- Mathematical approach and implementation
- Actual discussion of protocol steps

Application scenario

- Alice and Bob have recently been divorced
-Who gets the car?
- How to decide over a distance?
- B doesn't want to guess, hear A flip coins, then lose => cheatproofing!

[1]

Universität Augsburg University

Applicability

- Two adversaries
- One of them generates RANDOM Bits
- It is in the interest of the picking side NOT to pick at random

Thus, a protocol is needed to ensure random picking

Goals

- Guarantee to B that A WILL pick a random sequence of Bits
=> Flip coins „to" her
- Guarantee to A that B does not know the sequence himself
- Ensure and enforce that no cheating occurs
=> Judge's protocol

One-Way functions

- Two types: Completely and normally secure
- $x=>f(x)$ is easily computible, $f(x)=>x$ is not for the vast majority of values
- From knowing $f(x)$, you have a maximal chance of 50% to guess a non-trivial property of x
- Both functions share the first property, the second is exlusive to the completely secure variation

Protocol using a CS-OWF

- A and B agree on a function f
- A picks an integer x, computes $f(x)$ and sends it to B
- B guesses whether x is even or odd
- A reveals the result and sends x as confirmation
- End
- But: A CS-OWF is hard to come by, maybe it doesn't even exist [B'81]

2-1 function

- For the protocol, we'll use a normally secure one-way function with an additional property
- The 2 - 1 function maps two elements from its domain to each element of each range
- For $x, y: f(x)=f(y)$
- The values x and y shall be distinguished by a simple property => even and odd

Consequences

- If A computes $f(x)$ and sends it to B, he has no idea if x or y was used for the computation
- B then guesses whether the original number was even or odd
- A then reveals the result and sends the number she used, in this case x
- The sending must be automatized, or else A may just send y without anyone being the wiser

Needed properties

- No cheating => probability is 50-50, guaranteed
- If one participant is caught cheating, it is provable to the judge
- After B's coin tosses, A knows the results. Until she reveals it to him, he has no idea.
- After the flips, A can verify to B how the coins fell
=> The protocol fulfills all goals while staying applicable

Additional properties

- Each adversary knows at each step if the other cheats => The court only provides justice, independent proof or force a participant to complete the protocol
- B can use his public key n, provided its correct construction, to flip coins
- B does not need new primes for each flip, for the needed computation time per flip is of the order of $\operatorname{gcd}(x, y)$

Assumptions

- We assume that no procedure can efficiently factor a number n comprised of two large primes (1)
- We assume both A and B possess their own true random number generators (2)
- Signed messages via the secure signature proposed by Diffie and Hellman [DH'79], implemented by Rivest, Shamir and Adleman [RSA'78] (3)

Assumption (1)

- In 1980s Technology, a 1000 CRAY-1's would need over 5 years to factorize a 160 digit prime [B'81]
- The interesting property for computational speed is FLOPS (Floating point operations per second)
- 1000 CRAY-1A's: 80 GFLOPS [3]
- 1 Nvidia Geforce GTX 1080 Ti: 11.5 TFLOPS (SP) [4]
- A difference in speed of a factor 143,75

Assumption (1)

- If we assume the computation time of the CRAY-1's to be exactly 5 years, then the graphics card will take only about 12 and a half days to factorize the prime
=> In our time, the protocol has to be either completed in a much shorter timeframe, or the prime needs to be much larger
- If we use a modern supercomputer, the needed time can easily be pushed down into the hour range

Assumption (1)

- What about using a quantum computer instead of a regular one?
- Classical factorization algorithms scale with an exponential order
- Quantum factorization algorithms scale with a below exponential order (almost polynomial)
=> A quantum computer would be able to factorize the number in an even shorter timeframe

Assumption (2)

- A true random number generator may be impossible to construct [B'81]
- There are several decent generators [5]
- We assume that any modern random number generator will be sufficient for the application

Assumption (3)

- The basic idea of the encryption [DH'79]:
- In advance, A and B agree on a shared secret
- If need be, A and B mix their secret with the shared one and send it
- When they mix the other's secret with their own, they both obtain the same, common secret
=> The method is set up this way! If there is a difference in outcome, the shared secret is not the same either

Jacobi-Symbol

$$
(x / n)= \begin{cases}1, & \text { if } x \text { is quadratic residue to } a \\ 0, & \text { if } x \text { is factor of } n \\ -1, & \text { if } x \text { is no quadratic residue to } a\end{cases}
$$

- Quadratic residue:

$$
\begin{aligned}
& x:=a^{2} \\
& x=a^{2}+t * n
\end{aligned}
$$

Universität

Definition by code

- x_i: arbritrary integers
- $n _i$ i: positive odd integers
- $(x / n)=0$ if $\operatorname{gcd}(x, n)=/=1$
- $(1 / n)=1$
- $\left(\left(x _1^{*} x _2\right) / n\right)=\left(x _1 / n\right)^{*}\left(x _2 / n\right)$
- $\left(x /\left(n _1^{*} n _2\right)\right)=\left(x / n _1\right)^{*}\left(x / n _2\right)$
- $\left(x _1 / n\right)=\left(x _2 / n\right)$ if $x _1=x _2 \bmod n$

Universität

Definition by code

- $(-1 / n)=+1$ if $n=1 \bmod 4$, or
- $(-1 / n)=-1$ if $n=3 \bmod 4$
- $(2 / n)=+1$ if $n=1$ or $7 \bmod 8$, or
- $(2 / n)=-1$ if $n=3$ or $5 \bmod 8$
- $\left(n _1 / n _2\right)=\left(n _2 / n _1\right)$ if $\operatorname{gcd}\left(n _1, n _2\right)=1$ and [n_1 or n_2 = $1 \bmod 4]$, or
- $\left(n_{_} 1 / n _2\right)=-\left(n _2 / n _1\right)$ if $\operatorname{gcd}\left(n _1, n _2\right)=1$ and [n_1 and n_2 = $3 \bmod 4$]

Universität

Zn*

- For an integer $n>1$:
- $\mathrm{Zn}^{*}=\left\{0<n _i<n ; n _i\right.$ coprime to $\left.n\right\}$
- Coprime := No shared common positive factors except 1

Lemma

$n=p_{1}^{e_{1}} * \ldots * p_{k}^{e_{k}}$
$k:=$ integer >1
$p_{i}:=$ distinct odd primes
$e_{i}:=$ positive integers
$a \in Z n^{*}$ is quadratic residue $\bmod \mathrm{n}$ $x^{2}=a \bmod n$

Lemma

$$
\begin{array}{r}
x=\left[\pm\left(x_{1} v_{1} p_{2}^{e_{2}} * \ldots * p_{k}^{e_{k}}\right) \pm\left(x_{2} v_{2} p_{1}^{e_{1}} * \ldots * p_{k}^{e_{k}}\right) \pm\right. \\
\left. \pm \ldots \pm\left(x_{k} v_{k} p_{1}^{e_{1}} * \ldots * p_{k-1}^{e_{k-1}}\right)\right] \bmod n
\end{array}
$$

v_{1} is any integer defined so $\left(v_{1} p_{2}^{e_{2}} * \ldots * p_{k}^{e_{k}}\right) \bmod p_{1}^{e_{1}}=1$

- The other values of v are similarily defined
- Proof by LeVeque, Theorems 3.21 \& 5.2 [L'77]

Theorem 1

- For any odd integer n which can be expressed in the way of the lemma, except that $k=1$ is also permitted, then the following statements are equivalent:
- There are x, y in $Z n^{*}$ with $x^{\wedge} 2=y^{\wedge} 2 \bmod n$ and $(x / n)=1=(y / n)$
- p_i^(e_i) $=3$ mod 4 for some i
- Let a from Zn * be a quadratic residue to $\bmod n$; Then exactly half the roots in Zn^{*} of the equation $a=x^{\wedge} 2 \bmod n$ have $(x / n)=1$, the other half $(x / n)=-1$

Publication date of n

- At the beginning of the protocol, B sends n and the publication date of n to A - why?
- B cannot be sure that the factorization of n remains secret for longer than a fixed period of time
- It is unreasonable to expect indefinite contact between A and B

The protocol - Step 1

- Bob selects n :
- He picks two random exactly 80-digit primes $p _1$ and $p _2$, both congruent to $3 \bmod 4$
- Then $n=p_{-} 1$ * ${ }^{2} 2$ $B=>A: ~ „ n$, published YYYY -MM-DD"

The protocol - step 2

- A tests n (if A trusts B, skippable)
- Check that n is 160 digits and $\mathrm{n}=1 \bmod 4$ => n is odd and $(-1 / n)=1$
- Check for some x that there exists a y so $x^{\wedge} 2=y^{\wedge} 2 \bmod n$ and $(x / n)=/=(y / n)$

The protocol - step 2

- Testing procedure:
- B => A: Select 80 random numbers x_i from Zn^{*} and send $\mathrm{x} \mathrm{i}^{\wedge} 2 \bmod \mathrm{n}$ to A
- A => B: Send a sequence of 80 random bits b _ i to B, where $b _i$ is either 1 or -1
- $B=>A$: For each i, send back $x _i$ if $b _i$ is 1 or y _i if b i is -1
- This convinces A that the first condition of Theorem 1 holds. It fails with a probability of $2^{\wedge}(-80)<1 /\left(N _A\right)$

Universität Augsburg University

The protocol - step 3

- B flips coins to A:
- Mandatory signing of messages!
- A checks the publication date
- A => B: A selects 80 x _i from Zn^{*} at random; then sends „n, publication date of $n, x^{i}{ }^{\wedge} 2 \bmod n-$ signed by $A^{"}$
- Delicate point for A : B might not respond, then claim A did not want to continue. The judge is needed then (Termination or forced completion of the protocol)

The protocol - step 3

- B checks n and it's publication date
- B => A: „n, x_i^2 mod n, b_i, signed by B"
- A computes the Jacobi symbols of x _i and saves the results as Js_i
- Js_i = b_i => r_i =1, else r_i = -1
- Now A knows what B flipped her, he has no idea

The protocol - step 3

- $A=>B$: „x_i, signed by A"
- Signature is not needed if B is confident A does not know the factorization of n
- B now confirms his flips by computing (x - $/ \mathrm{n}$) and matching it to his guesses b_i => ri
- If more flips are needed, the first two steps may be skipped as long as the same n is used
- END

Judge's protocol

- May be programmed in an ironclad fashion
- I case of dispute:
- Subpoena all signed messages; if the case has exceeded the statute of limitations, throw it out
- If A produces a signed messages relating to a signed message from B, he must present said message or be found guilty of cheating

Judge's protocol

- Test n as in step 2
- If no messages have been provably exchanged during step 3 , terminate the protocol by signed message (even if A send her first message and B did not care)
- Otherwise, force completion of protocol
- Check that x i^2 2 mod n in A's first signed message matches with quadratic residue mod n of x i in the later A signed message
=> if not, find A guilty of cheating

Judge's protocol

- Determine r_i
- A and B are given a signed message showing the judge's findings
- END

Literature

- Blum, Manuel. (1982). Coin Flipping by Telephone - A Protocol for Solving Impossible Problems.. Sigact News SIGACT. 15. 133-137. 10.1145/1008908.1008911. [B'81]
- W. Diffie and M.E. Hellman. (1979). Privacy and Authentication: An Introduction to Cryptography.. Proc. IEEE, vol. 67 no. 3, 397-427 [DH'79]
- W.J. LeVeque. (1977). Fundamentals of Number Theory. Addison-Wesley Pub. [L'77]
- R.L. Rivest, A. Shamir, L.L. Adleman. (1978). A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Commun. ACM, vol. 21, 120-126 [RSA'78]

Sources and pictures

- https://tvtropes.org/pmwiki/pmwiki.php/Main/AliceAndBob [1]
- http://www.magic-factory-essen.de/zubehoer/muenzen/doppelkopfmuenze-half-dollar-kopf.html [2]
- https://www.bernd-leitenberger.de/cray-1.shtml [3]
- https://www.heise.de/newsticker/meldung/Grafikkarte-Nvidia-GeForce-GTX-1080-Ti-angetestet-Hoechs [4]
- https://en.wikipedia.org/wiki/List_of_random_number_generators [5]
- https://en.wikipedia.org/wiki/Coprime_integers\#/media/File:Coprime8.svg [6]
- https://www.amazon.com/Judges-Gavel-with-Striking-Block/dp/B01B3Z0R5S [7] All sites last accessed on 23.7.18, 12:21

Universität Augsburg

Thank you!

Source:
www.xkcd.com

